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To ensure that a true zero-extinction kinematical limit value has been attained

by extrapolation of a series of measurements on one re¯ection, the proper

dependence of a function of F versus the function of the physical variable

involved in the measurements has to be identi®ed. To demonstrate this point,

the multiwavelength -ray data on seven re¯ections of NiF2 reported by Palmer

& Jauch [Acta Cryst. (1995), A51, 662±667] have been utilized. A new physical

component has been introduced into the relationship between diffracted

intensity and wavelength ± that due to the decrease in angular divergence of

diffraction from crystallites with decrease in wavelength. For -rays, this leads to

a function of F2 in respect of wavelength, viz F2 � F2
0 ÿ ��� ��2, which is

different from that derived from Zachariasen-type models, viz F2 � F2
0 ÿ k�2.

Comparison of the limit values according to Palmer & Jauch and according

to Mathieson & Stevenson demonstrates the advantage of the functional

dependence proposed in this study.

1. Introduction

With -rays of wavelength 0.0205, 0.0265, 0.0392 and 0.0603 AÊ ,

Palmer & Jauch (1995), hereafter PJ95, measured the

diffracted intensities from a group of seven re¯ections from a

single crystal of NiF2 (recorded as F2 in their Table 1). The sets

of four results were tested by Palmer & Jauch against the

predictions from extinction models of Becker & Coppens

(1975) and of Sabine (1992) to determine which was more in

accord with the experimental data. Our intention is different.

With this unique set of -ray data, we have examined the

question of extrapolation to zero extinction (Mathieson, 1979;

Mackenzie & Mathieson, 1979, 1984) in respect of wavelength

in the -ray region. To this end, we have considered the role of

changing wavelength on the conditions of diffraction from the

assembly of crystallites of an `imperfect crystal'.

2. The role of extrapolation

Extrapolation of a series of experimental measurements,

An(am), against a function of the variable, a, to a speci®ed

limit, aL, which is not itself attainable directly by experimental

means, can be a valuable procedure to establish a `correct'

value of A, correct in the sense either of the elimination of

systematic errors in An and/or the achievement of a proper

prescription of A. The selection of the most appropriate

function of the variable can in¯uence the value at the extra-

polation limit and is therefore a matter of some importance.

In crystallography, use has been made of this procedure to

establish accurate estimates of cell parameters by extrapola-

tion to � = 90� on the basis that the various sources of

systematic error are eliminated at the otherwise-unattainable

limit [see Buerger (1942) for the development of this

approach]. Initially, the extrapolation procedure (Kettmann,

1929) was pragmatic and involved a series of measurements

plotted against �, with graphical extrapolation to � = 90�.
Subsequently, extrapolation to that limit was against

different functions of � (or a combination of such functions),

the particular function being related to the speci®c source of

the systematic error. In other words, the form of the function

used for reliable extrapolation depends on the speci®c char-

acteristics of the experimental set-up, including those of the

specimen.

When one's concern is with the attainment of accurate zero-

extinction kinematical limit structure-factor values by extra-

polation (Mathieson, 1979; Mackenzie & Mathieson, 1979,

1984), then, as noted above, the form of the function of the

variable selected can be critical. In the present context, it is

therefore of importance to look at the physical factors

involved in diffraction in the very short wavelength -ray

region.

When diffraction from imperfect crystals with -rays of

wavelength less than 0.1 AÊ is compared with diffraction with
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more conventional wavelengths ca 1 AÊ , the comparative

magnitude of certain factors is altered. Thus the role of

absorption is much reduced and the relative role of scattering

rendered more signi®cant. In particular, the reduction in

wavelength relative to the size of the constituent crystallites

in¯uences the divergence of the beams diffracted by the

crystallites.

If we look closely at the features subsuming the various

models derived from Darwin's (1922) equations, such as those

referred to in PJ95, there appear to be two main aspects that

invite question. Firstly, the matter of wavelength is not

explicitly included in the equations. So relationships derived

solely from Darwin's equations, and subsequent variants, do

not and cannot yield a functional relationship in respect of

wavelength. Only when allied with other factors, e.g. as

derived from Zachariasen's (1967) treatment, does a depen-

dence of extinction level on wavelength appear to apply, as

utilized in PJ95 (p. 665) ÿ (�) = (1 ÿ k�2). Secondly, there is

an in-built contradiction between the physical model ± the

`mosaic' crystal, made up of an array of fragmented crystallites

± and the mathematical model based on differential calculus.

The mathematical model presumes a continuous medium, i.e.

a continuous dependence of scattering per unit length, while

the physical model is such that the sequence of interactions

may occur after a distance that may be short or long.

So we have concluded that, to examine the dependence on

�, we will accept the essential physical nature of the `mosaic'

model but consider an approach that is compatible with the

probable steps when a -ray beam passes through an array of

crystallites ± namely a sequence of discontinuous interactions.

3. The discontinuous model

In order to establish the picture in relation to -ray diffraction

by an `imperfect' crystal, examination of the situation ab initio

in some detail is necessary. First, consider an individual crys-

tallite.

3.1. The acceptance and diffraction angular ranges of a
crystallite

Imagine a vanishingly thin vertical line source of radiation

of wavelength �. Let there be a small crystallite on a vertical

rotation axis. Associated with a particular Bragg plane of the

crystallite is an acceptance arc, origin at the crystallite and

looking towards the source with a divergence angle 'a. There

is also the diffraction arc, centred at the crystallite and

pointing towards the detector, with a divergence angle 'd.

When the crystallite is rotated on its axis, the acceptance and

diffraction arcs also rotate. When the acceptance arc inter-

cepts the source, radiation is transmitted from the source to

the crystallite and is then diffracted at the edge of the

diffraction arc. This continues as the crystal rotates until the

acceptance arc reaches its limit and passes beyond the source.

Simultaneously, the diffracted beam reaches the outer edge of

the diffraction range.

3.2. The magnitude of u in relation to k

Consider diffraction from a crystallite of dimension 1000 AÊ

(say), where d is the plane spacing and N is the number of

planes so Nd = 1000 AÊ . In respect of this one dimension, the

width of the divergence of the ®rst-order re¯ection of spacing

d is given by the Wilson±Stokes relationship (Wilson, 1949):

�0 ÿ �00 � �=" cos �; �1�
where " represents the thickness of the crystallite. It is evident

that the beam divergence from a crystallite, 'd, as given by

�0 ÿ �00, is proportional to the wavelength, see also James

(1948). Table 1 shows the variation of the width for the change

in � from 0.02 to 0.10 AÊ .

It should be noted that, for conventional X-ray wavelengths

such as 1 AÊ , the value of the width, see Table 1, may be

comparable with the misorientation distribution of crystallites

so that the following discussion would be modi®ed in that

region. The conditions associated with a merging into the

region of X-ray wavelengths remain to be explored.

At this stage, we ignore the absorption factor.

3.3. Impact of the dimension of ud on diffraction from a
crystal block of crystallites

Fig. 1(i) schematically depicts the sequence of interactions

with crystallites in a mosaic crystal. For the ®rst interactions

(Fig. 1a), the angular scan range of the crystal block is greater

than the limits of the orientational distribution of the crys-

tallites (`mosaic spread') so, when the crystal block is rotated,

the acceptance arcs of all crystallites have the opportunity to

interact with the source. This is only true of the ®rst interac-

tions. The result may be depicted in Fig. 1(a)(ii) where the

crystallites are shown distributed throughout the crystal, z

representing the distance through the crystal from the

entrance face to the exit face, zL. Crystallite interaction is

indicated by their `lighting up' and, for this interaction, every

crystallite interacts so the level of interaction through the

crystal block is shown as constant [Fig. 1(a)(iii)]. The resultant

diffracted intensity corresponds to the ®rst term, I1.

Subsequent interactions after the ®rst are of a different

nature. Instead of a broad source of X-rays, the radiation

passed on after the ®rst interactions consists of an array of

beams from the individual crystallites distributed throughout

the crystal block and with divergence determined by the

crystallites' size and hence the wavelength, see equation (1).

These beams are then incident on the ®xed mutual orienta-

tional distribution of the crystallites within the crystal block.

Table 1
Width of beam divergence, �0 ÿ �0 0, with respect to the -ray wavelength.

� (AÊ ) Width (�0 ÿ �0 0) (0 0)

0.02 4.1
0.04 8.3
0.06 12.4
0.08 16.5
0.10 20.6

1.00 206.4



So subsequent interactions depend on two factors ± the

divergence of the acceptance/diffracted beams and the

distribution of crystallite orientations. Not all subsequent

potential interactions (from a purely angular point of view)

can take place because the probability of interaction occurring

will change as one goes from the entrance face of the block to

the exit face.

The second interactions (Fig. 1b) can only happen after the

®rst interactions so the level of interaction at z = 0 is zero.

Beams that arise from ®rst interactions throughout the crystal

will then proceed forward through the crystal block. The level

of interaction increases with passage through the crystal. Since

the beams diffracted by the ®rst interaction are of much

smaller divergence compared with the `mosaic spread' of the

crystallites, the number of crystallites that are activated or

partially activated (`lit up' in the diagram) [Fig. 1(b)(ii)] is

much reduced and, in toto, is proportional to the divergence

and hence to �. So the normalized diffracted intensity of this

component is I2 = ÿ��. The general trend of the level of

interaction for the second interactions is indicated in Fig.

1(b)(iii).

The population of beams to generate the third interaction

(Fig. 1c) is proportional to �. These beams, in their turn,

interact with the mosaic spread of crystallites that lie between

them and the exit face. The overall effect is multiplicative and

the number of interactions is therefore much reduced [Fig.

1(c)(ii)] so that the normalized diffracted intensity component

is I3 � +��2. The corresponding trend of the level of interac-

tion for the third interactions is indicated in Fig. 1(c)(iii). So

the normalized intensity in the diffracted beam corresponds to

F2 � F2
0 ÿ ��� ��2.

This model suggests a form of extrapolation appropriate for

multiwavelength -ray data. It also indicates that it could

provide estimates of the second and subsequent interaction

components (if any).

3.4. Examination of the PJ95 data

To examine the experimental data of PJ95 in relation to the

`discontinuous model', the ®rst step was simply to plot the data

against �. This proved most interesting in that it revealed that,

even within this limited sample of seven re¯ections, there were

clear-cut differences. For ®ve of the seven (Fig. 2a), they rather

obviously suggest straight line relationships, F2 � F2
0 ÿ ��,

the lines ®tted by least squares being shown. By their linear

nature, it is evident that extrapolation to � � 0 yields proper

estimates of the zero-extinction F2
0 values for the individual

re¯ections. For these ®ve re¯ections, the discontinuous model

indicates that only the ®rst and second interactions are rele-

vant and any subsequent interactions do not apparently make

a signi®cant contribution.

With respect to the remaining two re¯ections, again the

experimental data are plotted against wavelength (Fig. 2b). In

this case, the experimental points do not fall on a straight line

but are curved concave upwards. While approximately holding

to a straight line near � = 0, the curves bend upwards as �
increases indicating a positive contribution to F 2. In the

discontinuous model, this corresponds to the positive contri-

bution from the third interaction. Fitted values for these latter

two re¯ections are shown in Table 2, which also presents

the individual � and �2 contributions. [Note: There is no

presumption that the experimental points are absolutely
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Figure 1
(i) Schematic depiction of the sequence of discrete interactions of a -ray beam incident on a series of crystallites in a mosaic crystal. (ii) represents the
array of crystallites through the crystal from the entrance face, z = 0, to the exit face, z = zL, the level of interaction due to the sequence (a) to (c) being
represented by ®lled or partially ®lled circles. (iii) represents the level of interaction from z = 0 to z = zL for the sequence of interactions 1 to 3.
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accurate. The curves are ®tted to the points to demonstrate the

essential trends in the data.]

4. Discussion

The basic reason for extrapolation is to achieve the kinema-

tical limit value of the structure factor from a set of experi-

mental measurements carried out against an appropriate

function of a physical variable (Mathieson, 1979). As noted

above, the result can depend critically on the function of the

variable chosen for extrapolation. The present study illustrates

this point dramatically. Palmer & Jauch (1995) assumed a

Zachariasen-type relationship, (�) = (1 ÿ k�2) and plotted

their data against �2, deriving limit values for the various F2
0

which they presented in their Table 2 for the various theore-

tical models discussed. Our limit values (under MS02) using

the same original experimental data (Figs. 2a and 2b) are

compared in Table 3 with those of PJ95 for the Becker &

Coppens theoretical model (which appear numerically to be

closely allied with the Sabine SAB-P model). It is evident that

our procedure consistently leads to higher values. Given the

plots in Figs. 2(a) and 2(b), it is dif®cult to avoid the conclusion

that MS02 corresponds to a more straightforward procedure

with clearly de®ned end points.

Further evidence concerning the absolute level of the

kinematical limit values comes from the early structure

analysis of NiF2 by Baur & Khan (1971). With their structural

and thermal (harmonic) parameters, F2
c values (� = 0) for the

designated re¯ections have been calculated with the anom-

alous dispersion corrections, f 0 and f 00, set to zero. These

results are shown in Table 3 under BK71. Since they are

calculated values, it is presumed that they represent kinema-

tical limit values (Bragg et al., 1926) and are therefore also

zero-extinction values. These values are also consistently

larger than those of PJ95. Our impression from examining

Palmer & Jauch's experimental results is that the values listed

under MS02 more reliably establish the true kinematical limit

values for NiF2.

The re¯ections 220 and �220 have several points of interest.

For both, the second interaction is, as one would expect,

signi®cantly larger than that of the third interaction, as

evidenced in Table 2. Of the two, it is �220 that reveals the

greater level of extinction (see Fig. 2b), compatible with a

larger second component and lesser third component (Table

2). From an experimental point of view, the considerable

difference in curvature for the two re¯ections must be asso-

Figure 2
Plots of the experimental F2 values against � to yield zero-extinction
values. (a) for ®ve of the seven re¯ections, with extrapolation to � � 0 of
the straight lines, F2 � F2

0 ÿ ��, ®tted to the data points. (b) for the two
remaining re¯ections, a symmetry-equivalent pair, with extrapolation to
� � 0 of the curves, F2 � F2

0 ÿ ��� ��2, ®tted to the data points.

Table 2
For the four wavelengths, F2

meas is compared with F2
calc derived from the

formula speci®ed for 220 and �220, respectively; numerical values of
the three contributions to F2

calc are listed.

220 F2
calc = 2435 ÿ 15293� � 109225�2

� (AÊ ) F2
0 ÿ�� ���2 F2

calc F2
meas

0.0205 2435 ÿ313.5 �45.9 2167.4 2167
0.0265 2435 ÿ405.3 �76.7 2106.4 2107
0.0392 2435 ÿ599.5 �167.8 2003.3 2003
0.0603 2435 ÿ922.2 �397.2 1910.0 1910

�220 F2
calc = 2399 ÿ 19830� � 62532�2

� (AÊ ) F2
0 ÿ�� ���2 F2

calc F2
meas

0.0205 2399 ÿ406.5 �26.3 2018.8 2019
0.0265 2399 ÿ525.5 �43.9 1917.4 1918
0.0392 2399 ÿ777.3 �96.1 1717.8 1718
0.0603 2399 ÿ1195.7 �227.4 1430.7 1431

Table 3
Comparison of the values of F2

0 obtained by extrapolation by Palmer &
Jauch (1995) and by Mathieson & Stevenson in the present case (MS02),
both derived from the original set of F2 values of PJ95; last column, BK71,
is of F2

c values calculated with the structural and thermal (harmonic)
parameters of NiF2 determined by Baur & Khan (1971); � represents the
sum of the F2 terms.

PJ95 MS02 BK71
hkl F2

0 F2
0 F2

c

002 2519 2774 2794
220 2170 2435 2342
�220 2099 2399 2309
301 1985 2166 2035
211 1739 1854 1784
330 1104 1133 1174
�330 1077 1134 1150

� 12693 13895 13588



ciated with their internal morphology. The planes (220) and

(�220) are at right angles so the recorded values must re¯ect

signi®cant differences in the crystallite distortions and mutual

misorientations as viewed from the two perspectives. A two-

dimensional �!�2� investigation of the original crystal

specimens carried out at normal wavelengths, cf. Mathieson &

Stevenson (1986), would probably aid in clarifying the ques-

tion of the internal morphology.

Concerning 220 and �220, Palmer & Jauch comment that

`Extrapolations from symmetry-equivalent re¯ections should

lead to identical structure factors in the kinematic limit, � = 0,

thus providing a strong criterion for an assessment of the ®ts'.

However, in the space group of NiF2, P42=mmm, the re¯ec-

tions hh0 and �h �h0 are a symmetry-equivalent Friedel pair but,

while hh0 and �hh0 are symmetry equivalent, they are not a

Friedel pair. The small difference in structure-factor magni-

tude is associated with a term in the temperature factor. A

general discussion of conditions for equivalence of re¯ections

is given by Ibers (1967).

Since the extinction-free values of F2
0 are derived by

extrapolation from experimental data, estimates of the level

of extinction,  � F2=F2
0 , are essentially experiment based

and may therefore be of interest. These are given in Table 4.

� corresponds to the slope of the lines in Fig. 2(a), i.e.

[F2(0.06) ÿ F2(0)]=0.06.

5. Conclusions

Before one attempts to ®t experimental F 2 data to a particular,

and possibly inappropriate, relationship, it is worthwhile

examining the plot of the experimental F 2 values for each

re¯ection against � for their trend. There are several possi-

bilities that can be described by the following relationships:

(i) F2 � �F2
0 ÿ k1��; (ii) F2 � �F2

0 ÿ k1�� k2�
2�; and (iii)

F2 � �F2
0 ÿ k2�

2�. The second possibility has a special case,

F � �F0 ÿ k1��, so that F2 � �F2
0 ÿ 2k1F0�� k2

1�
2�, ki > 0.

These relationships are associated with the following trends.

The ®rst, obviously, is a straight line (as in Fig. 2a). The second

is concave upwards (as in Fig. 2b). The third is concave

downwards and corresponds to a Zachariasen-derived rela-

tionship (see PJ95, p. 665).

One can therefore judge, purely from the experimental

trend for the individual re¯ection, which general case applies.

On this basis, one can carry out the extrapolation for each

re¯ection almost wholly from the experimental results as we

have performed in Figs. 2(a) and 2(b). The better the quality of

the data, the more clearly de®ned is the trend and the more

precisely established is the extrapolation limit. In this respect,

the multiwavelength data of Palmer & Jauch (1995) are

outstanding.

It is interesting to note that Hester & Okamura (1996)

carried out multiwavelength measurements on a crystal of

K2PdCl4 over the range 0.11±0.25 AÊ . They plotted their results

as F versus �, which they pointed out corresponds to a straight

line. As we note above, this result is equivalent to

F2 � �F2
0 ÿ ��� ��2� and their observations appear to

extend the wavelength range of this formula beyond the -ray

region into the lower limits of the more classical X-ray range.

Multiwavelength -ray measurement appears capable of

providing information on the sequence of diffraction inter-

actions, which suggests that this discontinuous model warrants

further investigation.

We are most grateful to Drs A. Pogany and S. W. Wilkins for

valuable suggestions arising from their reading of the text.
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Table 4
Tabulation of the seven re¯ections, their extrapolated F2

0 values, the slope
of the � component and the `experimental' estimate of extinction level for
each of the four wavelengths.

 � F2=F2
0

hkl F2
0 � (AÊ ÿ1) �1 �2 �3 �4

002 2774 ÿ21637 0.84 0.80 0.69 0.53
301 2166 ÿ13003 0.88 0.84 0.78 0.63
211 1854 ÿ7351 0.92 0.89 0.85 0.76
330 1133 ÿ1629 0.97 0.95 0.96 0.91
�330 1134 ÿ3979 0.92 0.91 0.88 0.79
220 2435 0.89 0.87 0.82 0.78
�220 2399 0.84 0.80 0.72 0.60


